

A NEW WAVE IN BIO-BASED MATERIALS

De-bottenecking biorefineries & creating maximum value for biomass

WHY

Sugar-based Bioplastics and lignin-based composites

METGEN

Lignin-based resins and adhesives, wood-fibre composites

METGEN

Lignin-based foams and composites

See? That's evervthi

WASTE:

Oil

versus

Low

Raw material variability

High

Yield-to-products

Adds Carbon to the system

Carbon capture

Cumulates to environment

End-of-life

Renewable materials

High

Low

Has high potential to capture carbon

Has high potential for recycle or degradation

Vocabulary

BIOREFINERY

The **coproduction** of a range of **biologically**-based products (food, feed, materials, chemicals) and **energy** (fuels, power, heat) from **biomass**

LIGNOCELLULOSIC

Lignocellulose refers to plant dry matter (biomass), so called lignocellulosic biomass. It is the most abundantly available raw material on the Earth for the production of renewable fuels, chemicals and materials. It is composed of carbohydrate polymers (cellulose, hemicellulose), and an aromatic polymer (lignin)

THE BIG PICTURE: HAVE A BIOREFINERY AND MAKE IT WORK

FEEDSTOCK COSTS

Selection of material

Location

replace all plastic with one feedstock. It's not sustainable."

PRE TREATMENT EFFICIENCY

Enzyme technologies can be integrated part of the refinery concept - we have just the model for you!"

3

RIGHT ENZYME AND RIGHT PRICING

Enzymatic technologies work seamlessly with chemical and mechanical solutions creating a full value chain.

BENEFIT OF TAILORED HYDROLYSIS ENZYMES

Every substrate can be addressed with multitude of enzymes, and a failure to find an optimal one leads to overdosing, low process yields, increased waste volumes and – what is worst – loss of money.

MetGen's production strains and processes together with the flexible business model allow for licensing and on-site manufacturing options.

Collaboration with other players in the value-chain lowers the technology costs even further.

COST OF ENZYME / TON OF BIOMASS

COST PROJECTION FOR HYDROLYSIS ENZYMES FOR >90% SUGAR YIELD FOR AN ASIAN BIOREFINERY PROJECT

Biomass is not oil— it's a soup of the day."

TOO MANY SIDESTREAMS AND TOO MUCH WASTE.

One-product-in-one-product-out is outdated and wasteful model

Waste is expensive!

Traditional process uses 40.

We can extend this to 95 %

GOAL IS ZERO-WASTE

These things are not complicated, they are very black and white."

TOO LOW VALORIZATION

HOW TO DO THIS?

STREAMLINED CHEMO-ENZYMATIC ROUTE TO BIOPLASTICS AND PLATFORM CHEMICALS

MetGen's patent-filed processes enable:

- Complete C6 conversion
- Use of 2nd Gen sugars
- Streamlined processes and higher yields
- New routes to platform chemicals

ENZYMATIC SOLUTIONS FOR FIBRE MODIFICATION

You don't make sneakers, loudspeakers or dashboards out of crude oil. You use refined fractions."

ENZYMATIC LIGNIN VALORIZATION WITH METNIN™ TECHNOLOGY

ENZYMATIC LIGNIN FRACTIONING PROCESS

ENZYMATIC LIGNIN FRACTIONING PROCESS

POTENTIAL DOWNSTREAM PROCESSING ROUTES

THESE ARE CURRENT FOCUS AREAS

METNIN FRACTIONS FROM MEMBRANE FRACTIONATION @ 20% DS: METNIN ULTRA: MICRO: METNIN NANO: **MEDIUM MW HIGH MW LOW MW** 5 - 10 kDa 1 – 3 kDa < 1 kDa LIQUID **ACID** CO-ACID **EVAPORATION EVAPORATION EVAPORATION EVAPORATION FORMULATION PRECIPITATION PRECIPITATION PRECIPITATION** METNIN™ **SOLIDS SOLIDS** LIQUID **SOLIDS SHIELD** LIQUID **DRYING DRYING** FORMULATION **SEPARATION SEPARATION FORMULATION SEPARATION** (sizing product) Water Water powder powder **DRYING** soluble soluble **DRYING DRYING** RESIN **RESIN RESIN RESIN** POLYOLS, **COMPOSITES** DROP-IN See next slide for unit ops **COMPOSITES** LIGNOPOLYOLS **EMULSIFIERS** etc

METNIN™ IMPACT ON LIGNIN

FRACTIONATION

DEMETHYLATION

ACTIVATION

Analysis provided by Prof. N. Labbé et al. Department of Forestry, University of Tennesee, USA.

TOO FEW PRODUCTS

Resins

Polymers

Barriers and coatings

ENZYMATIC LIGNIN REFINING ADDS VALUE

METGEN	MOLECULAR WEIGHT	REACTIVITY & SOLUBILITY	APPLICATION	BIO- EQUIVALENT OF	PRICE	COLLABORATION PARTNER PRODUCTS
CURRENTLY AVAILABLE LIGNIN	5–100 kDa	Poor	Fuel	Oil/ Elecricity	50–100 €/ton	Fuel, thermoplastics, fillers
ENZYME ACTIVATED LIGNIN	METNIN MICRO 3–50 kDa	Medium	Resins & Adhesives	Phenol From- aldehyde	400–500 €/ton	MDF, plywood, epoxy, and paint resins, carbon black
ENZYME DEPOLYMERIZED LIGNIN	METNIN ULTRA 0,3–2 kDa	Good	Foams & Composites	Polyols	1000–2000 €/ton	Insulation panels, flexible foams, furniture, construction material, car tires, barrier coatings
ENZYME DEPOLYMERIZED FRACTIONS	METNIN NANO 0,3 kDa 0,5 kDa 0,7 kDa	Excellent	New materials	Speciality Chemicals & Polymers	> 2000 €/ton	Coatings, Plasticizers, Cosmetics, carbon nanofibers, flavors, fragranses, detergents

FROM FOREST TO BRANDS – WHERE METNIN™ FITS?

INVESTMENT COST

PLANT CAPACITY (feed)

7 kt DS/year

BUILDINGS 1120 k€

TOTAL INVESTMENT COST

5850 k€

EQUIPMENT 2780 k€

OTHERS 1950 k€

Precicion of cost +/- 20 %

CASH FLOW

OPERATING DAYS

5850 k€

350 days/year

PLANT CAPACITY (feed)

7 kt DS/year

operating cost -735 k€

CASH FLOW

2555 k€

/year

RAW MATERIAL UTILIZATION

70%

RAW MATERIAL COST

300 €/t DS

RAW
MATERIAL
COST
-2000 k€

OPERATING COST

150 €/t DS

PRODUCT PRICE

1100 €/t DS

INVESTMENT COST

PLANT CAPACITY

7 kt DS/year

CASH FLOW +2,55 M€ /year

TOTAL INVESTMENT COST

5,85 M€

PLANT CAPACITY

50 kt DS/year

TOTAL INVESTMENT COST

28 M€

CASH FLOW +18,25 M€ /year

Valorization of lignin has a hell of an impact."

CONNECTION TO MARKET

- Future of leadership is like conducting an orchestra where everyone plays their own instrument.
 - with passion."

We know HOW to do this.

THE BIG PICTURE: HAVE A BIOREFINERY AND MAKE IT WORK

This is a true refinery, not a waste generator."

ACKNOWLEDGEMENT OF PUBLIC EU H2020 FUNDING

These projects have received funding from the Bio Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreements No: SWEETWOODS (792061), WoodZymes (792070), UNRAVEL (792004), BIOrescue (720708), BIOFOREVER (720710). FALCON and ButaNexT have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No (720918) and (640462). APEX has received funding from the European Union's Horizon 2020 SME-instrument under grant agreement No (666346).

MetGen – the friendly enzyme company invites you to join in the bio-based industry revolution.

##